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This work concerns the numerical approximation of a multicomponent compressible Euler 
system for a fluid mixture in multiple space dimensions on unstructured meshes with a 
high-order discontinuous Galerkin spectral element method (DGSEM). We first derive an 
entropy stable (ES) and robust (i.e., that preserves the positivity of the partial densities 
and internal energy) three-point finite volume scheme using relaxation-based approximate 
Riemann solvers from Bouchut (2004) [9] and Coquel and Perthame (1998) [22]. Then, we 
consider the DGSEM based on collocation of quadrature and interpolation points which 
relies on the framework introduced by Fisher and Carpenter (2013) [28] and Gassner 
(2013) [31]. We replace the physical fluxes in the integrals over discretization elements 
by entropy conservative numerical fluxes [Tadmor (1987) [71]], while ES numerical fluxes 
are used at element interfaces. We thus derive a two-point numerical flux satisfying the 
Tadmor’s entropy conservation condition and use the numerical flux from the three-point 
scheme as ES flux. Time discretization is performed with a strong-stability preserving 
Runge-Kutta scheme. We then derive conditions on the numerical parameters to guaranty 
a semi-discrete entropy inequality as well as positivity of the cell average of the partial 
densities and internal energy of the fully discrete DGSEM at any approximation order. 
The later results allow to use existing limiters in order to restore positivity of nodal 
values within elements. The scheme also resolves exactly stationary material interfaces. 
Numerical experiments in one and two space dimensions on flows with discontinuous 
solutions support the conclusions of our analysis and highlight stability, robustness and 
high resolution of the scheme.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Discretization of compressible multicomponent flows

The accurate and robust (i.e., preserving the solution in the set of admissible states) simulation of compressible mul-
ticomponent flows with material interfaces is of strong significance in many engineering applications (e.g., combustion in 
propulsion systems, explosive detonation products) and scientific applications (e.g., flow instabilities, chemical reactions, 
phase changes). These flows may involve nonlinear waves such as shock and rarefaction waves, contact waves, material 
interfaces separating different fluids, and their interactions which usually trigger phenomena leading to small scale flow 
structures. The discussion in this paper focuses on the nonlinear analysis of a high-order discretization of the multicompo-
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nent compressible Euler system for a fluid mixture in multiple space dimensions. Numerical approximation of such flows 
based on interface capturing methods has been the subject of numerous works. Conservative schemes suffer from spurious 
oscillations at material interfaces due to the violation of pressure equilibrium [1]. Non-conservative formulations have been 
proposed [1,2,48] but do not ensure mass conservation of the different species. The ghost-fluid method [27] removes the 
pressure oscillations but the approximation of the interface is limited to first order, while the front tracking method [33]
requires expensive operations and do not satisfy mass conservation. High-order discretizations have also been considered 
to resolve the broad range of scales usually present in these flows. Though not exhaustive, we refer to the works on fi-
nite differences [51,49,56,12], finite volume methods [79,46,41,76,35], or discontinuous Galerkin (DG) methods [23,53] and 
references therein. We here consider the discontinuous Galerkin spectral element method (DGSEM) based on collocation 
between interpolation and quadrature points [25,50].

1.2. Entropy conservative and entropy stable flux differencing schemes

Using diagonal norm summation-by-parts (SBP) operators and the entropy conservative (EC) numerical fluxes from Tad-
mor [71], semi-discrete EC finite-difference and spectral collocation schemes have been derived in [28,13] for nonlinear 
conservation laws and the DGSEM falls into this general framework of conservative elementwise flux differencing schemes. 
Entropy stable (ES), also known as entropy dissipative, DGSEM for the compressible Euler equations on hexahedral [32] and 
triangular [17] meshes have been proposed by using the same framework. The particular form of the SBP operators allows 
to take into account the numerical quadratures that approximate integrals in the numerical scheme compared to other 
techniques that require their exact evaluation to satisfy the entropy inequality [44,40]. The DGSEM thus provides a general 
framework for the design of ES schemes for nonlinear systems of conservation laws. An ES DGSEM for the discretization of 
general nonlinear hyperbolic systems in nonconservative form has been introduced in [64] and applied to two-phase flow 
models [64,21]. Numerical experiments in [32,77,17,64,21] highlight the benefits on stability of the computations, though 
this not guarantees to preserve neither the entropy stability at the fully discrete level, nor robustness of the numerical 
solution. A fully discrete ES DGSEM has been proposed in [30], while ES and robust DGSEM have been proposed in [25,63]
for the compressible Euler equations.

A common way to design ES numerical fluxes in the sense of Tadmor [71] is due to [67,42] and consists in deriving EC 
numerical fluxes to which one adds upwind-type dissipation [72,29,13,32,78,64,21,15,35]. Nevertheless, this may cause diffi-
culties to derive further properties of the scheme, such as preservation of invariant domains or bound preservation because 
the numerical flux may involve intricate operations of its arguments [42,15]. These properties are however important for the 
robustness and accuracy of the scheme. These fluxes are also non Lipschitz continuous which is required to apply existing 
results [9,39,57] that we will use in this work. Besides, for smooth solutions or large scale oscillations around discontinuities 
the DG approximation is known to become less sensitive to the numerical flux as the scheme accuracy increases [58,62], but 
this is no longer the case when small scale flow features are involved and the numerical flux has a strong effect on their res-
olution [55,16]. One has therefore to pay a lot of attention in the design of the numerical fluxes at interfaces. In the present 
work, we first design an ES and robust (i.e., that preserves positivity of the partial densities and internal energy) three-point 
scheme and then use it as a building block to define an ES, robust and accurate DGSEM. The multicomponent Euler system 
is therefore required to possess a convex entropy, which prevents the use of some models in the literature [1,48,3]. The 
model is in conservative form and will be discretized by using a conservative scheme and will thus be prone to spurious 
oscillations at moving material interfaces separating phases with different thermodynamic properties. This drawback can be 
detrimental to applications involving fluids with highly nonlinear equations of state in which the coefficients depend on the 
thermodynamic variables as, for instance, in shock driven combustion problems, dynamics of explosive detonation products, 
etc. Let us stress however that for some non-genuinely multi-dimensional methods, spurious oscillations may appear even 
in non-conservative methods when the material interface is not aligned with the mesh making this property not useful in 
practice. Likewise, many research and industrial codes consider discretely conservative schemes and yet constitute relevant 
tools for the analysis: see, e.g., the codes THYC from EDF [52] and FLICA from CEA for the simulation of water-vapor flows 
in nuclear power plants (see [5, Sec. 2] and references therein), or the CHARME solver in the CEDRE software from ONERA 
for energetics and propulsion applications [61]. Moreover, the present method will be shown to satisfy other desirable prop-
erties (entropy stability, robustness, high-order accuracy) an to well reproduce the physical mechanisms of shock-material 
interface interaction problems on two-dimensional unstructured grids.

1.3. Contributions of this work

The thermodynamic properties of multicomponent flows depend on the mass fractions of the different phases which 
makes difficult the design of an ES and robust three-point scheme. An ES flux has been proposed in [35] that combines an 
EC flux with dissipation and was applied to high-order TecNO schemes [29], but this prevents the derivation of a provably 
robust scheme. In [24] a relaxation technique is applied to the multicomponent Euler system which allows the use of 
monocomponent ES schemes for each component. However, this technique does not hold for the separated fluid mixture 
in Eulerian coordinates under consideration in this work. Likewise, the use of simple wave solvers such as the HLL [39], 
Roe [66], Rusanov [68], or relaxation [9] schemes require the estimation from above of the maximum wave speeds in the 
Riemann problem for which fast estimates such as the two-rarefaction approximation [74, Ch. 9], the iterative algorithm 
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from [36] (see also the review [73] and references therein) do not exist to the best of our knowledge. Here we consider the 
energy relaxation technique introduced in [22] for the approximation of the monocomponent compressible Euler equations 
with general equation of states. The method allows the design of ES and robust numerical schemes by using classical 
numerical fluxes for polytropic gases. The work in [54] extended this technique to the compressible multicomponent Euler 
equations for a gas mixture in thermal non-equilibrium and derived a general way to define an ES finite volume scheme 
from any scheme for the polytropic gas dynamics. We here follow this approach to derive an ES for our model from a scheme 
for the polytropic gas dynamics. However we will show that the entropy for the relaxation system is not strictly convex due 
to the closure for the fluid mixture in our model, which in turn prevents to derive a general framework for designing robust 
and ES fluxes. We here overcome this difficulty by using the approximate Riemann solver based on pressure relaxation from 
[9]. Relaxation schemes circumvent the difficulties in the treatment of nonlinearities associated to the equation of state by 
approximating the nonlinear system with a consistent linearly degenerate (LD) enlarged system with stiff relaxation source 
terms [45,18,14].

This ES numerical flux is used in the DGSEM at mesh interfaces, while the EC numerical flux from [35] is used within 
the discretization elements resulting in a semi-discrete ES scheme. We prove that the discrete scheme with explicit time 
integration exactly captures stationary contacts and stationary material interfaces at interpolation points. We further derive 
conditions on the time step to keep positivity of the cell-averaged partial densities and internal energy. This is achieved by 
extending the framework introduced in [80] for Cartesian meshes to unstructured meshes with straight-sided quadrangles. 
We indeed formulate the DGSEM for the cell-averaged solution as a convex combination of positive quantities under a CFL 
condition by using results from [57]. We finally apply a posteriori limiters [80] that extend the positivity to nodal values 
within elements.

The paper is organized as follows. Section 2 presents the multicomponent compressible Euler system under consideration 
and some of its properties. We derive the EC two-point numerical flux and recall some properties of three-point schemes 
in section 3. We derive an ES relaxation-based three-point scheme in section 4 that we then use as building block for the 
DGSEM introduced in section 5. We analyze the properties of the fully discrete DGSEM in section 6. The results are assessed 
by numerical experiments in one and two space dimensions in section 7 and concluding remarks about this work are given 
in section 8.

2. Model problem

Let � ⊂ Rd be a bounded domain in d space dimensions, we consider the IBVP described by the multicomponent 
compressible Euler system for a fluid mixture with nc components. This model is used for instance to simulate water-vapor 
flows where the vapor is in saturation state [5,4]. The problem reads

∂tu + ∇ · f(u) = 0, in � × (0,∞), (1a)

u(·,0) = u0(·), in �, (1b)

with some boundary conditions to be prescribed on ∂� (see section 7). Here

u =

⎛
⎜⎜⎝

ρY
ρ
ρv
ρE

⎞
⎟⎟⎠ , f(u) =

⎛
⎜⎜⎝

ρYv�
ρv�

ρvv� + pI
(ρE + p)v�

⎞
⎟⎟⎠ ,

denote the conserved variables and the convective fluxes with Y = (Y1, . . . , Ync−1)
� the mass fractions of the nc − 1 first 

components with 
∑nc

i=1 Yi = 1; ρ , v in Rd , and E are the density, velocity vector, and total specific energy of the mixture, 
respectively. The mixture quantities are defined from quantities of the nc components through

nc∑
i=1

αi = 1, ρ =
nc∑

i=1

αiρi = ρ

nc∑
i=1

Yi, ρE =
nc∑

i=1

αiρi Ei, p =
nc∑

i=1

αipi(ρi, ei), (2)

where Ei = ei + v·v
2 and αi = ρYi/ρi is the void fraction of the ith component. Note that we have ρE = ρe + ρ v·v

2 , where 
ρe = ∑nc

i=1 αiρiei denotes the internal energy of the mixture per unit volume. Equations (1) are supplemented with poly-
tropic ideal gas equations of states:

pi(ρi, ei) = (γi − 1)ρiei, ei = C vi Ti, 1 ≤ i ≤ nc, (3)

where γi = C pi /Cvi > 1 is the ratio of specific heats which are assumed to be positive constants of the model. The model 
assumes thermal and mechanical equilibria:

Ti(ρi, ei) =: T(Y, e), pi(ρi, ei) =: p(Y,ρ, e), 1 ≤ i ≤ nc, (4)

thus leading to
3
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e(Y,T) = C v(Y)T, p(Y,ρ, e) = (
γ (Y) − 1

)
ρe = ρr(Y)T(Y, e), (5)

with

r(Y) = C p(Y) − C v(Y), C p(Y) =
nc∑

i=1

YiC pi , C v(Y) =
nc∑

i=1

YiC vi , (6)

and

γ (Y) = C p(Y)

C v(Y)
. (7)

Note that due to (3) and (4) we have

ρr(Y) = ρiri, ri := C pi − C vi = (γi − 1)C vi , 1 ≤ i ≤ nc, (8)

so the model allows to evaluate explicitly the partial densities and so the void fractions:

αi = ρYi

ρi
= ri

r(Y)
Yi ∀1 ≤ i ≤ nc,

System (1a) is hyperbolic in the direction n in Rd over the set of states

�a = {u ∈ Rnc+d+1 : 0 ≤ Y1≤i≤nc ≤ 1,ρ > 0, e = E − v·v
2 > 0}, (9)

with eigenvalues λ1 = v · n − c ≤ λ2 = · · · = λnc+d = v · n ≤ λnc+d+1 = v · n + c, where λ1,nc+d+1 are associated to genuinely 
nonlinear fields and λ2≤i≤nc+d to LD fields. The sound speed reads

c(Y, e) =
√

γ (Y)
(
γ (Y) − 1)e. (10)

From (6) and (7), we have

γ (Y) ≤ γmax ∀0 ≤ Y1≤i≤nc ≤ 1, γmax := max
1≤i≤nc

γi . (11)

Admissible weak solutions to (1) should satisfy the entropy inequality

∂tη(u) + ∇ · q(u) ≤ 0 (12)

for the entropy – entropy flux pair

η(u) = −ρs(u), q(u) = −ρs(u)v, s ≡
nc∑

i=1

Yisi, (13)

where the specific partial entropies are defined by the second law of thermodynamics and using (4):

Tdsi = dei − p

ρ2
i

dρi, 1 ≤ i ≤ nc, (14)

and read

si(ρi, ei) = C vi ln
(

ei

ρ
γi−1
i

)
+ s∞

i
(3)= −C vi ln θ − ri lnρi + C vi ln C vi + s∞

i , (15)

with θ = 1
T and s∞

i an additive constant. Using (8) and T = ei
C vi

= e
C v (Y)

, the mixture entropy in (13) becomes

s(Y, τ , e) =
nc∑

i=1

Yi

(
C vi ln

( C vi
C v (Y)

e
) − ri ln

( r(Y)
ri

ρ
) + s∞

i

)
= r(Y) lnτ + C v(Y) ln e + K (Y), (16a)

K (Y) =
nc∑

i=1

Yi

(
C vi ln

( C vi
C v (Y)

( ri
r(Y)

)γi−1) + s∞
i

)
, (16b)

where τ = 1 denotes the covolume of the mixture.
ρ

4
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Using (13), the differential forms (14), and θ
(
ei − p

ρi

) = C pi , we get

d(ρs) =
nc∑

i=1

ρiθ
(

dei − p
ρ2

i
dρi

)
+ sidρi = θd(ρe) +

nc∑
i=1

(si − C pi )dρi

= θ
(

d(ρE) − v · d(ρv) + v·v
2 dρ

)
+

nc−1∑
i=1

(si − C pi )dρi + (snc − C pnc
)
(

dρ −
nc−1∑
i=1

dρi

)
,

so the entropy variables read

η′(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

snc − s1 + C p1 − C pnc
...

snc − snc−1 + C pnc−1 − C pnc

C pnc
− snc − v·v

2 θ

θv
−θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

and the entropy potential is easily obtained:

ψ(u) := f(u)�η′(u) − q(u)

=
nc−1∑
i=1

(snc − si − C pnc
+ C pi )ρiv +

(
C pnc

− snc − v·v
2 θ

)
ρv + θ(ρvv� + pI)v − θ(ρE + p)v − ρs(u)v

=
nc∑

i=1

C pi ρiv − ρeθv = r(Y)ρv. (18)

3. Two-point numerical fluxes and associated finite volume schemes

3.1. Entropy conservative and entropy stable numerical fluxes

In the following, we design numerical fluxes for the space discretization of (1). We adopt the usual terminology from 
[71] and denote by entropy conservative for the pair (η, q) in (12), a numerical flux hec satisfying

�η′(u)� · hec(u−,u+,n) = �ψ(u) · n� ∀u± ∈ �a, (19)

where �a� = a+ − a− and n in Rd is a unit vector. The flux will also be required to be symmetric in the sense [28,17]:

hec(u−,u+,n) = hec(u+,u−,n) ∀u± ∈ �a. (20)

Then, a numerical flux h will be entropy stable when

�η′(u)� · h(u−,u+,n) ≤ �ψ(u) · n� ∀u± ∈ �a. (21)

Both numerical fluxes h and hec are assumed to be consistent:

hec(u,u,n) = h(u,u,n) = f(u) · n ∀u ∈ �a, (22)

and conservative:

hec(u−,u+,n) = −hec(u+,u−,−n), h(u−,u+,n) = −h(u+,u−,−n) ∀u± ∈ �a, (23)

and the ES numerical flux h is further assumed to be Lipschitz continuous in the first two arguments. In this work we use 
numerical fluxes that satisfy these properties.

An EC flux for the multicomponent Euler equations has been proposed in [35] and we apply their method to derive an 
EC flux in Appendix B for the sake of comparison with our approach. Below we propose another EC flux that takes into 
account the particular choice of densities in (1). Indeed the choice of the numerical flux is not unique and depends on the 
choice of variables we use to express the entropy pair and entropy potential [15,60].

Lemma 3.1. The following numerical flux is symmetric (20), consistent (22), and EC (19) for the HRM model (1) and pair (η, q) in
(12):
5



F. Renac Journal of Computational Physics 445 (2021) 110584
hec(u−,u+,n)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hρY1(u−,u+,n)
...

hρYnc−1(u−,u+,n)

hρ(u−,u+,n)

hρ(u−,u+,n)v + pθ

θ
n

nc−1∑
i=1

C vi −C vnc
θ̂

hρYi (u−,u+,n) +
(

C vnc
θ̂

+ v−·v+
2

)
hρ(u−,u+,n) + pθ

θ
v · n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

hρYi (u−,u+,n) = rnc (ρ̂nc −ρ̂)

r(Y)−rnc
Yiv · n,

hρ(·, ·, ·) = ρ̂ v · n,

(24)

where ̂a = �a�
�ln a�

denotes the logarithmic mean [42], a = a++a−
2 is the average operator, and θ = 1

T .

Proof. Symmetry follows from the symmetry of the logarithmic mean and average operator. Then, observe that

hρYi (u, u, n) = rnc (ρnc −ρ)

r(Y)−rnc
Yiv · n (8)= r(Y)ρ−rnc ρ

r(Y)−rnc
Yiv · n = ρYiv · n. Likewise, hρE(u, u, n) = (∑nc

i=1 Cvi TρYi + 1
2 ρv · v + p

)
v · n =

(ρE + p)v · n thus consistency follows.
From (15) we expand �si� = −Cvi �ln θ� − ri�lnρi� and

�ψ(u) · n�
(18)= �r(Y)ρv · n�

(5)= (
pθ�v� + �ρr(Y)�v

) · n
(8)= pθ�v� · n + rnc �ρnc �v · n, (25)

and using short notations for the flux components in (24) together with the observation that �lnρi� = �lnρnc + ln rnc
ri

� =
�lnρnc � from (8), we get

�η′(u)� · hec(u−,u+,n) − �ψ(u) · n�

(17)=
(25)

nc−1∑
i=1

�(C vi − C vnc
) ln θ + ri lnρi − rnc lnρnc �hρYi

+ �C vnc
ln θ + rnc lnρnc − v·v

2 θ�hρ + �θv� · hρv − �θ�hρE − pθ�v� · n − rnc �ρnc �v · n

= �θ�
( nc−1∑

i=1

C vi −C vnc
θ̂

hρYi + ( C vnc
θ̂

− v·v
2

)
hρ + v · hρv − hρE

)

+ �lnρnc �
( nc−1∑

i=1

(ri − rnc )hρYi + rnc hρ − rnc ρ̂nc v · n
)

+ θ�v� ·
(

hρv − hρv − pθ

θ
n
)
.

Now observe that from (6) we have r(Y) = rnc + ∑nc−1
i=1 Yi(ri − rnc ), so we obtain

nc−1∑
i=1

(ri − rnc )hρYi =
nc−1∑
i=1

(ri − rnc )
rnc (ρ̂nc −ρ̂)

r(Y)−rnc
Yiv · n = rnc (ρ̂nc − ρ̂)v · n

nc−1∑
i=1

(ri−rnc )Yi

r(Y)−rnc
= rnc (ρ̂nc − ρ̂)v · n, (26)

and using (24) and then this result we finally get

�η′(u)� · hec(u−,u+,n) − �ψ(u) · n�

(24)= �θ�
(

− v·v
2 − v−·v+

2 + v2
)

hρ + �lnρnc �
( nc−1∑

i=1

(ri − rnc )hρYi + rnc (ρ̂ − ρ̂nc )v · n
)

(26)= 0,

which ends the proof. �
Remark 3.1. The EC flux in (24) requires only three calls of the logarithmic mean for evaluating ρ̂nc , ρ̂ , and θ̂ , compared 
to nc + 1 calls in (B.1) derived in Appendix B. It is thus cheaper for nc > 2 as this evaluation is computationally expensive. 
Moreover, as the logarithmic mean requires positive arguments to avoid floating point exceptions, (24) is also less sensitive 
to robustness issues.
6
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Remark 3.2. Due to the particular form of the convective terms in the momentum equations, the numerical flux (24) is 
formally kinetic energy preserving [15] in the sense of [43]: when ignoring boundary conditions, the global kinetic energy 
budget is only affected by the pressure work, not the transport terms. This property may however fail at the discrete level 
and numerical results show that the discretization of the pressure plays an important role for the discrete kinetic energy 
preservation [32].

3.2. Entropy stable and robust finite volume schemes

We first consider three-point numerical schemes of the form

Un+1
j = Un

j − �t
�x

(
h(Un

j ,Un
j+1,n) − h(Un

j−1,Un
j ,n)

)
, 0 < �t

�x max
j∈Z

|λ(Un
j )| ≤ 1

2 , (27)

for the discretization of (1a) in one space dimension, where h is assumed to be consistent, conservative, and Lipschitz 
continuous. Here Un

j approximates the averaged solution in the j-th cell at time t(n) , �t and �x are the time and space 
steps, and |λ(·)| corresponds to the maximum absolute value of the wave speeds. The scheme (27) is said to be entropy 
stable for the pair (η, q) in (12) if it satisfies the inequality

η(Un+1
j ) − η(Un

j ) + �t
�x

(
Q (Un

j ,Un
j+1,n) − Q (Un

j−1,Un
j ,n)

) ≤ 0, (28)

with some consistent entropy numerical flux Q (u, u, n) = q(u) · n.
Such schemes use necessarily ES numerical fluxes [9, Lemma 2.8]. In this work, we found more convenient to prove that

(27) satisfies (28) than to prove (21) for the numerical flux in (27).
Likewise, the scheme (27) will be said to be robust or positive if the solution remains in the set of states (9): Un

j∈Z in �a

implies Un+1
j∈Z in �a . By extension the associated numerical flux will be also described as robust or positive.

We now consider a numerical scheme for quadrilateral meshes Xh ⊂R2 using the two-point numerical flux in (27):

Un+1
κ = Un

κ − �t
|κ |

∑
e∈∂κ

|e|h(Un
κ ,Un

κ+
e
,ne) ∀κ ∈ Xh,n ≥ 0, (29)

where ne is the unit outward normal vector on the edge e in ∂κ , and κ+
e the neighboring cell sharing the interface e

(see Fig. 1). Each element is shape-regular: the ratio of the radius of the largest inscribed ball to the diameter is bounded 
by below by a positive constant independent of the mesh. We will also use the next result which is an extension to 
quadrilaterals of results from [57]. We reproduce the proof in Appendix A for the sake of completeness as the original proof 
in [57] considered triangular meshes.

Lemma 3.2. (Perthame and Shu [57, Th. 4]) Let a three-point numerical scheme of the form (27) with a consistent (22), conservative
(23), and Lipschitz continuous numerical flux h(·, ·, ·) for the discretization of (1a) that satisfies positivity of the solution, Un≥0

j∈Z in �a, 
under the CFL condition in (27). Then, the scheme

Un+1
κ = Un

κ − �t
|κ |

∑
e∈∂κ

|e|h(Un
κ−

e
,Un

κ+
e
,ne),

∑
e∈∂κ

|e|
|∂κ | Un

κ−
e

= Un
κ , |∂κ | :=

∑
e∈∂κ

|e|, (30)

on quadrilateral meshes is also robust, Un≥0
κ∈Xh

in �a, under the condition

�t max
κ∈Xh

|∂κ |
|κ | max

e∈∂κ

|∂κe|
|e| max

f ∈∂κ
|λ(Un

κ±
f
)| ≤ 1

2
, (31)

with κ = ∪e∈∂κκe divided into sub-triangles as in Fig. 1.

4. Entropy stable and robust relaxation-based numerical flux

We here derive an ES and robust numerical flux for (1a) which is given in section 4.4. To do so, we will need to combine 
two successive relaxation approximation steps. In sections 4.1 and 4.2, we apply the energy relaxation approximation [22]
to (1a) by following the work in [54]. The results from [54] do not apply directly for two main reasons: (i) the systems 
differ by their closure law for the pressure and the definition of the mixture, (ii) the entropy for our relaxation system is 
here not strictly convex as will be shown in Lemma 4.1. The latter reason makes difficult to derive an ES scheme for the 
energy relaxation system as required by the approach in [22,54]. As a consequence, we cannot apply directly the general 
framework from [54] to derive three-point schemes for our model. We overcome this difficulty in section 4.3 by introducing 
a pressure-based relaxation approximation containing only LD fields [9] together with a minimization principle on the 
entropy (see Appendix C for details on this derivation together with a description of the numerical flux). In the following, 
we recall the main steps and results of the energy relaxation approximation that will allow to derive the numerical flux for
(1a).
7
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κ+
e

κe = κ−
e

κ f

e

f

+ −

lef

ne

nef

Fig. 1. Quadrilateral element κ (right) divided into sub-triangles κ = ∪e∈∂κκe and neighboring element κ+
e sharing the edge e ∈ ∂κ . Notations: ne is the 

unit outward normal vector to κ on e; nef is the unit normal vector to κe ∩ κ f oriented from κe to κ f ; lef = |κe ∩ κ f |; and the exponents ± correspond to 
outside and inside traces on e (nef and lef will be used in Appendix A).

4.1. Energy relaxation system

Following the energy relaxation method introduced in [22,54], we consider the system

∂twε + ∇ · g(wε) = −1

ε

(
wε −M(wε)

)
, (32)

with ε > 0 the relaxation time scale, and also the homogeneous form

∂tw + ∇ · g(w) = 0, (33)

where

w =

⎛
⎜⎜⎜⎝

ρY
ρ
ρv
ρEr

ρes

⎞
⎟⎟⎟⎠ , g(w) =

⎛
⎜⎜⎜⎜⎝

ρYv�
ρv�

ρvv� + pr(ρ, er)I(
ρEr + pr(ρ, er)

)
v�

ρesv�

⎞
⎟⎟⎟⎟⎠ , w −M(w) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

−ρ
(
es − F (Y, er)

)
ρ
(
es − F (Y, er)

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (34)

F is defined in (40), Er denotes the total specific energy, er = Er − v·v
2 the internal specific energy, and

pr(ρ, er) = (γ − 1)ρer, (35)

where γ is defined by

γ > γmax, γmax
(11)= max

0≤Y1≤i≤nc ≤1
γ (Y) > 1, (36)

and constitutes the subcharacteristic condition for (32) to relax to an equilibrium as ε ↓ 0 [22]. The set of states for (32) is

�r = {
w ∈Rd+nc+2 : 0 ≤ Y1≤i≤nc ≤ 1,ρ > 0, er > 0, es > 0

}
. (37)

Let introduce the operators

L : �r � w �→ Lw = (
ρY�,ρ,ρv�,ρEr + ρes

)� ∈ �a, (38a)

P : �a � u �→ P(u) =
(
ρY�,ρ,ρv�,ρE + p

γ −1 − p
γ (Y)−1 ,

γ −γ (Y)
γ (Y)−1

p
γ −1

)� ∈ �r, (38b)

with p = p(Y, ρ, e) defined from (5) and p
γ −1 evaluates ρer with equilibrium data. Then, in the limit w = limε↓0 wε , one 

formally recovers (1a) with

w = M(w), u = Lw, f(u) = Lg(P(u)), (39)

which corresponds to

E = Er + es, e = er + es, es = F (Y, er) := γ − γ (Y)

γ (Y) − 1
er, (40)

where F is defined from the consistency relation on the pressure and (5): p
(
Y, ρ, er + F (Y, er)

) = pr(ρ, er).
8



F. Renac Journal of Computational Physics 445 (2021) 110584
4.2. Entropy for the energy relaxation system

We now define an entropy ρζ(w) for (32) which will be helpful in deriving an ES scheme for (1). The method in [22,54]
requires a minimization principle and strict convexity of ρζ(w). We show that only the former property is satisfied here and 
we will overcome the difficulty associated to the latter in section 4.3. To analyze the entropy, it is convenient to consider 
the entropy as a function of ζ(Y, τ , er, es) [34, Ch. 2] with τ = 1

ρ the covolume of the mixture.
Following [54], we introduce the functions

ζ(Y, τ , er, es) = −s
(
Y,T (Y, τ , er, es),E(Y, es) + es

)
, (41a)

E(Y, es) = γ (Y)−1
γ −γ (Y)

es, T (Y, τ , er, es) = τ
( γ −γ (Y)

γ (Y)−1
er
es

) 1
γ −1 (41b)

where s is the mixture entropy (16) for (1a), while the function E solves es = F (Y, er) for er with F defined in (40). Using
(16a), (40) and (41), we easily obtain

ζ(Y, τ , er, es) = −r(Y) ln
(
τ
(

γ −γ (Y)
γ (Y)−1

er
es

) 1
γ −1

)
− C v(Y) ln

(
γ (Y)−1
γ −γ (Y)

es + es

)
− K (Y)

= −r(Y) lnτ − r(Y)
γ −1 ln

(
γ −γ (Y)
γ (Y)−1

er
es

)
− C v(Y) ln

(
γ −1

γ −γ (Y)
es

)
− K (Y)

= −r(Y) lnτ − r(Y)
γ −1 ln

(
γ −γ (Y)
γ (Y)−1

er
es

)
− C v(Y) ln(er + es) − C v(Y) ln

(
γ −1

γ −γ (Y)
es

er+es

)
− K (Y) (42a)

= −s(Y, τ , er + es) + ς(Y, er, es), (42b)

ς(Y, er, es) = C v(Y) ln
(( γ (Y)−1

γ −γ (Y)
es
er

) γ (Y)−1
γ −1

)
+ C v(Y) ln

( γ −γ (Y)
γ −1

er+es
es

)
. (42c)

We now prove the following minimization principle which will guaranty that the entropy ρζ for (32) decreases to a 
unique global minimum which is solution to the multicomponent Euler system (1a).

Lemma 4.1. Under the assumption (36), the function ρζ defined by (41) is a (non strictly) convex entropy for (32) that satisfies the 
following minimization principle:

−s(Y, τ , e) = min
er+es=e

{ζ(Y, τ , er, es) : er > 0, es > 0}, (43)

and the minimum is reached at a unique global equilibrium which is solution to the multicomponent Euler system (1a).

Proof. From (42a) and the definition of K (Y) in (16) we rewrite ζ as

ζ(Y, τ , er, es) = −r(Y) lnτ − r(Y)
γ −1 ln er − (γ −γ (Y))C v (Y)

γ −1 ln es

+ C v(Y) ln
(
(γ − γ (Y))C v(Y)

) + r(Y) ln r(Y) + r(Y)
γ −1 ln γ (Y)−1

γ −γ (Y)
+ l(Y), (44)

with l(Y) = ∑nc
i=1 Yi(Cvi ln Cvi + ri ln ri + s∞

i ) linear in Y. To prove that ρζ(w) is convex it is sufficient to prove that 
ζ(Y, τ , er, es) is convex [34, Ch. 2]. Introducing the short notations ∂kr ≡ ∂Yk r(Y), ∂kCv ≡ ∂Yk Cv (Y), and ∂kγ ≡ ∂Ykγ (Y), 
the Hessian of ζ reads

Hζ (Y, τ , er, es) =

⎛
⎜⎜⎜⎜⎝

(
∂2

klζ
)

1≤k,l<nc

(−∂kr
τ

)
1≤k<nc

( −∂kr
(γ −1)er

)
1≤k<nc

( ∂kr−(γ −1)∂kC v
(γ −1)es

)
1≤k<nc(−∂lr

τ

)
1≤l<nc

r(Y)

τ 2 0 0( −∂lr
(γ −1)er

)
1≤l<nc

0 r(Y)

(γ −1)e2
r

0( ∂lr−(γ −1)∂lC v
(γ −1)es

)
1≤l<nc

0 0 γ −γ (Y)
γ −1

C v (Y)

e2
s

⎞
⎟⎟⎟⎟⎠ , (45)

where

∂kr
(6)=
(7)

C v(Y)∂kγ + (γ (Y) − 1)∂kC v , (46)

and

∂kζ = −∂kr lnτ − ∂kr

γ − 1
ln er − γ ∂kC v − ∂kC p

γ − 1
ln es + ∂kC v ln

(
(γ − γ (Y))C v(Y)

) + γ ∂kC v − ∂kC p

γ − γ (Y)

+ ∂kr
(
1 + ln r(Y)

) + ∂kr

γ − 1
ln

γ (Y) − 1

γ − γ (Y)
+ r(Y)

γ − 1

( ∂kγ

γ (Y) − 1
+ ∂kγ

γ − γ (Y)

)
+ ∂kl(Y), 1 ≤ k < nc,
9
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gives

∂2
klζ = ∂kr∂lr

r(Y)
+ ∂kC v∂lC v

C v(Y)
+ C v(Y)∂kγ ∂lγ(

γ − γ (Y)
)(

γ (Y) − 1
) , 1 ≤ k, l < nc . (47)

We now prove that Hζ is symmetric positive semi-definite. Let x = (x1≤i<nc , xτ , xr, xs)
� in Rnc+2 and use the notation ∑ ≡ ∑nc−1

k=1 , we get

nc−1∑
k,l=1

xk∂
2
klζ xl

(47)= (
∑

xk∂kr)2

r(Y)
+ (

∑
xk∂kC v)2

C v(Y)
+ C v(Y)(

∑
xk∂kγ )2(

γ − γ (Y)
)(

γ (Y) − 1
)

(46)= γ (
∑

xk∂kr)2

(γ − 1)r(Y)
−

(∑
xkC v(Y)∂kγ + xk(γ (Y) − 1)∂kC v

)2

(γ − 1)r(Y)
+ (

∑
xk∂kC v)

2

C v(Y)
+ C v(Y)(

∑
xk∂kγ )2(

γ − γ (Y)
)(

γ (Y) − 1
)

= γ

γ − 1

(
∑

xk∂kr)2

r(Y)
+ (

∑
xk(γ − γ (Y))∂kC v − xkC v(Y)∂kγ )2(

γ − γ (Y)
)
(γ − 1)C v(Y)

(46)= γ

γ − 1

(
∑

xk∂kr)2

r(Y)
+ (

∑
xk(γ − 1)∂kC v − xk∂kr)2(

γ − γ (Y)
)
(γ − 1)C v(Y)

, (48)

so we obtain

x�Hζ x
(45)=
(48)

(
1 + 1

γ − 1

) (
∑

xk∂kr)2

r(Y)
+ (

∑
xk(γ − 1)∂kC v − xk∂kr)2(

γ − γ (Y)
)
(γ − 1)C v(Y)

+ r(Y)
x2
τ

τ 2
+ r(Y)

γ − 1

x2
r

e2
r

+
(
γ − γ (Y)

)
C v(Y)

γ − 1

x2
s

e2
s

− 2
∑

xk

(
∂kr

xτ

τ
+ ∂kr

γ − 1

xr

er
+ (γ − 1)∂kC v − ∂kr

γ − 1

xs

es

)

=
(∑

xk∂kr − r(Y) xτ
τ

)2

r(Y)
+

(∑
xk∂kr − r(Y) xr

er

)2

(γ − 1)r(Y)
+

(∑
xk((γ − 1)∂kC v − ∂kr) − (γ − γ (Y))C v(Y) xs

es

)2

(γ − γ (Y))(γ − 1)C v(Y)

which is non-negative.
Finally, according to (43), we need to prove that, for all positive er and es and fixed Y and τ , ς , defined in (42c), is non-

negative and vanishes at equilibrium (40) that constitutes a global minimum: −s ≤ ζ . Let us rewrite ς as C v (Y) ln
(

f (α, x)
)

with f (α, x) = (1−α)(1+x)
x

(
αx

1−α

)α
, x = es

er
> 0, and α = γ (Y)−1

γ −1 in (0, 1) from (36). We have ∂x f (α, x) = 1−α
x2 (αx +α − 1), thus 

∂x f (α, x) < 0 for 0 < x < xmin := 1−α
α , ∂x f (α, x) > 0 for x > xmin , and ∂x f (α, xmin) = 0. Since f (α, xmin) = 1, ς vanishes at 

the global minimum αxmin = 1 −α ⇔ γ (Y)−1
γ −1

es
er

= 1 − γ (Y)−1
γ −1 which indeed corresponds to the equilibrium (40): es = F (Y, er). 

This defines the internal energy, e = er + es = γ −1
γ (Y)−1 er , in (1) in a unique way so u is uniquely defined and the global 

minimum is unique in �a . �
4.3. Discrete energy relaxation

4.3.1. From a scheme for the energy relaxation system
The derivation of a scheme for (1a) with the energy relaxation approximation [22,54] uses a splitting of the hyperbolic 

and relaxation operators in (32). In the first step we consider the following three-point scheme for the homogeneous 
relaxation system (33):

Wn+1
j − Wn

j + �t
�x

(
H(Wn

j ,Wn
j+1,n) − H(Wn

j−1,Wn
j ,n)

) = 0, (49)

with H(w, w, n) = g(w) · n and we need to prove that this scheme is ES, i.e., under some condition on �t , we have

ρζ(Wn+1
j ) − ρζ(Wn

j ) + �t
�x

(
Z(Wn

j ,Wn
j+1,n) − Z(Wn

j−1,Wn
j ,n)

) ≤ 0, (50)

with Z(w, w, n) = ρζv · n. Since ρζ(w) is not strictly convex from Lemma 4.1, (50) is usually difficult to prove (for instance 
one cannot neither define w and g in (33) as functions of the entropy variables as in [38,71,75,47], nor derive entropy 
dissipation estimates as in [20], see also the review in [39]). We overcome this difficulty by considering a pressure-based 
relaxation scheme adapted from [9, Sec. 2.4] that satisfies (50). For the sake of readability, we derive the numerical scheme 
in Appendix C: the numerical flux in (49) is defined in (C.11), while we derive (50) in (C.7) and (C.8), and define Z in (C.9).
10
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4.3.2. To a scheme for the multicomponent Euler system
We here derive the ES, robust, consistent, and Lipschitz continuous numerical flux for (1a) from the pressure-based 

relaxation numerical flux for the relaxation system (32) with similar properties introduced in section 4.3 and detailed in 
Appendix C. From [22,54], the numerical flux for (1a) reads

h(u−,u+,n) = LH
(
P(u−),P(u+),n

)
, (51)

where the operators L and P are defined in (38). The explicit form of (51) is given in section 4.4. The L operator in (51)
consists in adding up the ρEr and ρes components of H to build the numerical flux for the total energy, ρE , while the 
P operators consist in taking data at equilibrium, i.e., pr = p(Y, ρ, e) and es = γ −γ (Y)

γ −1 e from (40). This last operation is 
equivalent to applying time discrete instantaneous relaxation and constitutes the second step of the splitting of hyperbolic 
and relaxation operators [22].

Providing that (36) holds, the numerical scheme (27) and the numerical flux (51) defined in (53) have the following 
properties for which points (iii) and (v) are direct consequences of Lemma 4.1 and (50) (see [54, Th. 4.3] for details):

(i) the flux (51) is consistent (22) by consistency of H: we have h(u, u, n) = LH
(
P(u), P(u), n

) = Lg(P(u)) · n = f(u) · n
from (39);

(ii) the flux (51) is Lipschitz continuous by composition of Lipschitz continuous functions;
(iii) the scheme (27) is ES in the sense (28) for the pair (η, q) in (13) with Q (u−, u+, n) = Z

(
P(u−), P(u+), n

)
;

(iv) the flux (51) is ES in the sense (21) since (28) implies (21) [9, Lemma 2.8];
(v) the scheme (27) is robust: Un≥0

j∈Z ∈ �a providing that U0
j∈Z ∈ �a .

4.4. Two-point numerical flux for (1a)

We here give details on the numerical flux (51) for the multicomponent Euler equations (1a). The flux follows from 
applying (51) to the numerical flux (C.11) and (C.12) which is shown in C.2 to lead to an ES and robust scheme (49). We 
thus obtain an ES and robust scheme (27) and (28) and an ES flux (21) for (1a) under the condition

�t

�x
max
j∈Z

|λ(Un
j )| <

1

2
, |λ(u)| := |v · n| + a

ρ , (52)

where a denotes the Lagrangian sound speed and will be defined in (56). The numerical flux reads

h(u−,u+,n) = f
(
Wr(0;u−,u+,n)

) · n, (53)

where the Riemann solver Wr(·; uL, uR , n) is used to approximate the solution to (1) in the direction n with initial data, 
u0(x) = uL if x := x · n < 0 and u0(x) = uR if x > 0, and reads

Wr( x
t ;uL,uR ,n) =

⎧⎪⎪⎨
⎪⎪⎩

uL,
x
t < SL,

u�
L, SL < x

t < u�,

u�
R , u� < x

t < S R ,

uR , S R < x
t ,

(54)

where u�
L = (ρ�

L Y�
L , ρ�

L , ρ
�
L v��

L , ρ�
L E�

L)
� , u�

R = (ρ�
R Y�

R , ρ�
R , ρ�

R v��
R , ρ�

R E�
R)� , and

v�
L = vL + (u� − uL)n, v�

R = vR + (u� − uR)n, (55a)

u� = aLuL + aR uR + pL − pR

aL + aR
, p� = aR pL + aLpR + aLaR(uL − uR)

aL + aR
, (55b)

τ �
L = τL + u� − uL

aL
, τ �

R = τR + uR − u�

aR
, (55c)

E�
L = E L − p�u� − pLuL

aL
, E�

R = E R − pR uR − p�u�

aR
, (55d)

where u X = vX · n and pX = p(YX , ρX , e X ) defined by (5) for X = L, R; (55a) corresponds to a decomposition into normal, 
u X , and tangential, vX − u X n, components of the velocity vector.

The wave speeds in (54) are evaluated from SL = uL − aL/ρL and S R = uR + aR/ρR where the approximate Lagrangian 
sound speeds [9] are defined by⎧⎨

⎩
aL
ρL

= cγ (ρL,pL) + γ +1
2

(
pR−pL

ρR cγ (ρR ,pR )
+ uL − uR

)+

aR
ρ = cγ (ρR ,pR) + γ +1

2

(
pL−pR

a + uL − uR

)+ , if pR ≥ pL, (56a)
R L

11
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•

•

•

•

κ = κ− κ+

e

u−
h u+

h

• •

•

•

•

•
••

•

•

•

•

ne

Fig. 2. Inner and outer elements, κ− and κ+ , for d = 2; definitions of traces u±
h on the interface e and of the unit outward normal vector ne ; positions of 

quadrature points in κ− and on e for p = 3.⎧⎨
⎩

aR
ρR

= cγ (ρR ,pR) + γ +1
2

(
pL−pR

ρL cγ (ρL ,pL)
+ uL − uR

)+

aL
ρL

= cγ (ρL,pL) + γ +1
2

(
pR−pL

aR
+ uL − uR

)+ , else, (56b)

where (·)+ = max(·, 0) denotes the positive part and cγ (ρ, p) = √
γ p/ρ with γ defined by (36).

5. DGSEM formulation

The DG method consists in defining a semi-discrete weak formulation of problem (1). The domain is discretized with a 
shape-regular mesh Xh ⊂ Rd consisting of nonoverlapping and nonempty cells κ and we assume that it forms a partition 
of �. By Eh we define the set of interfaces in Xh . For the sake of clarity, we introduce the DGSEM in two space dimensions 
d = 2, the extension (resp. restriction) to d = 3 (resp. d = 1) being straightforward. The present analysis is restricted to 
meshes with straight-sided cells and to infinite domains though bounded domains will be considered in section 7.

5.1. Numerical solution

We look for approximate solutions in the function space of discontinuous polynomials V p
h = {φ ∈ L2(Xh) : φ|κ ◦ xκ ∈

Qp(I2) ∀κ ∈ Xh}, where Qp(I2) denotes the space of functions over the master element I2 := {ξ = (ξ, η) : −1 ≤ ξ, η ≤ 1}
formed by tensor products of polynomials of degree at most p in each direction. Each physical element κ is the image of I2

through the mapping x = xκ (ξ). Likewise, each edge in Eh is the image of I = [−1, 1] through the mapping x = xe(ξ). The 
approximate solution to (1) is sought under the form

uh(x, t) =
∑

0≤i, j≤p

φ
i j
κ (x)Ui j

κ (t) ∀x ∈ κ, κ ∈ Xh, ∀t ≥ 0,

where (Ui j
κ )0≤i, j≤p are the degrees of freedom (DOFs) in the element κ . The subset (φi j

κ )0≤i, j≤p constitutes a basis of V p
h

restricted onto the element κ and (p + 1)2 is its dimension.
Let (�k)0≤k≤p be the Lagrange interpolation polynomials in one space dimension associated to the Gauss-Lobatto nodes 

over I , ξ0 = −1 < ξ1 < · · · < ξp = 1: �k(ξl) = δk,l , 0 ≤ k, l ≤ p, with δk,l the Kronecker symbol. In this work we use tensor 
products of these polynomials and of Gauss-Lobatto nodes (see Fig. 2):

φ
i j
κ (x) = φ

i j
κ (xκ (ξ)) = �i(ξ)� j(η), 0 ≤ i, j ≤ p, (57)

which satisfy the following relation at quadrature points ξ i′ j′ = (ξi′ , ξ j′ ) in I2:

φ
i j
κ (xi′ j′

κ ) = δi,i′δ j, j′ , 0 ≤ i, j, i′, j′ ≤ p, xi′ j′
κ := xκ (ξ i′ j′),

so the DOFs correspond to the point values of the solution: Ui j
κ (t) = uh(xi j

κ , t).
The integrals over elements and faces are approximated by using the Gauss-Lobatto quadrature rules so the quadrature 

and interpolation nodes are collocated:∫
κ

f (x)dV �
∑

0≤i, j≤p

ωiω j J i j
κ f (xi j

κ ),

∫
e

f (x)dS �
∑

0≤k≤p

ωk
|e|
2 f (xk

e), (58)

with ωi > 0, xi j
κ , and xk

e the weights and nodes of the quadrature rules, and J i j
κ = det

(
∂ξ xκ (ξ i j)

)
> 0.

Finally, let define the cell-averaged operator, for instance for the numerical solution:

〈uh〉κ (t) :=
∑

ωiω j
J i j
κ|κ | Ui j

κ (t), (59)

1≤i, j≤p

12
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where |κ | is evaluated through numerical quadrature so the weights satisfy

∑
1≤i, j≤p

ωiω j
J i j
κ

|κ | = 1. (60)

5.2. Space discretization

The semi-discrete form of the DGSEM in space of problem (1) starts from the following problem: for t > 0 find uh in 
(V p

h )nc+d+1 such that

∑
κ∈Xh

∫
κ

vh
(
∂tuh + ∇ · f(uh)

)
dV −

∑
e∈Eh

∫
e

�vh�h(u−
h ,u+

h ,ne) − �vhf(uh)� · nedS = 0 ∀vh ∈ V p
h , (61)

where �vh� = v+
h − v−

h denotes the jump operator and v±
h (x) = limε↓0 vh

(
x ± εne(x)

)
are the traces of vh at a point x on an 

interface e in Eh and ne(x) denotes the unit normal vector to e at x and pointing from κ− to κ+ . The ES relaxation-based 
numerical flux (53) is used to define h(·, ·, ·). Substituting vh for the Lagrange interpolation polynomials (57) and using 
the Gauss-Lobatto quadrature rules (58) to approximate the volume and surface integrals, (61) becomes: for all κ ∈ Xh , 
0 ≤ i, j ≤ p, and t > 0, we have

ωiω j J i j
κ

dUi j
κ

dt
+ ωiω j J i j

κ

( p∑
k=0

Dikf(Ukj
κ )∇ξ(ξ i j) +

p∑
k=0

D jkf(Uik
κ )∇η(ξ i j)

)

+ ωi

(
J ip

e δ jpd(xip
κ , t) + J i0

e δ j0d(xi0
κ , t)

)
+ ω j

(
J pj

e δipd(xpj
κ , t) + J 0 j

e δi0d(x0 j
κ , t)

)
= 0,

where Dik = �′
k(ξi), d(x, t) = h

(
u−

h (x, t), u+
h (x, t), ne(x)

) − f
(
u−

h (x, t)
) · ne(x) at x on e, u±

h (x, t) denote the traces of the 
numerical solution on e (see Fig. 2), and J ip

e := det(∂ξ xe)xip
κ

= |e|
2 where xip

κ , 0 ≤ i ≤ p, uniquely identify e.

As explained in the introduction, the volume integral in the above equation is modified so as to satisfy an entropy 
balance [28,77]: the physical fluxes are replaced by EC numerical fluxes (19), while the metric terms are modified to achieve 
conservation of the scheme over elements. The semi-discrete ES scheme thus reads

ωiω j J i j
κ

dUi j
κ

dt
+ Ri j

κ (uh) = 0 ∀κ ∈ Xh, 0 ≤ i, j ≤ p, t > 0, (62)

with

Ri j
κ (uh) = 2ωiω j

( p∑
k=0

Dikhec
(
Ui j

κ ,Ukj
κ , { Jκ∇ξ}(i,k) j

) +
p∑

k=0

D jkhec
(
Ui j

κ ,Uik
κ , { Jκ∇η}i( j,k)

))

+ ωi

(
J ip

e δ jpd(xip
κ , t) + J i0

e δ j0d(xi0
κ , t)

)
+ ω j

(
J pj

e δipd(xpj
κ , t) + J 0 j

e δi0d(x0 j
κ , t)

)
, (63)

where { Jκ∇ξ}(i,k) j = 1
2

(
J i j
κ ∇ξ(ξ i j) + J kj

κ ∇ξ(ξkj)
)
, { Jκ∇η}i( j,k) = 1

2

(
J i j
κ ∇η(ξ i j) + J ik

κ ∇η(ξ ik)
)
, and hec(·, ·, ·) denotes the EC 

numerical flux (24). The DGSEM (62) from [32,77] is one of more general conservative elementwise flux differencing 
schemes satisfying the semi-discrete entropy inequality for the cell-averaged entropy [28]:

|κ |d〈η(uh)〉κ
dt

+
∑
e∈∂κ

p∑
k=0

|e|
2 Q

(
u−

h (xk
e, t),u+

h (xk
e, t),ne

) ≤ 0, (64)

where Q (·, ·, ·) is defined in (28). Finally, high-order accuracy of (62) has been proved in [17,60].

6. Fully discrete scheme

We now focus on the fully discrete scheme and we first use a one-step first-order explicit time discretization and analyze 
its properties. High-order time integration will be done by using strong-stability preserving explicit Runge-Kutta methods 
[70] that keep the properties of the first-order in time scheme under some condition on the time step.
13
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6.1. Time discretization

Let �t(n) = t(n+1) − t(n) > 0, with t(0) = 0, be the time step, and use the notations u(n)

h (·) = uh(·, t(n)) and Ui j,n
κ = Ui j

κ (t(n)). 
The fully discrete DGSEM scheme for (1) reads

ωiω j J i j
κ

Ui j,n+1
κ − Ui j,n

κ

�t(n)
+ Ri j

κ (u(n)

h ) = 0 ∀κ ∈ Xh, 0 ≤ i, j ≤ p, n ≥ 0, (65)

where the vector of residuals Ri j
κ (·) is defined by (63). The projection of the initial condition (1b) onto the function space 

reads Ui j,0
κ = u0(xi j

κ ) for all κ in Xh and 0 ≤ i, j ≤ p.

6.2. Properties of the discrete scheme

We have the following results for the fully discrete solution of the DGSEM that guaranty its robustness and the preserva-
tion of stationary material interfaces. Let recall that h(·, ·, ·) in (62) and (63) is the relaxation-based ES and robust numerical 
flux (53).

Theorem 6.1. Let n ≥ 0 and assume that Ui j,n
κ is in �a for all 0 ≤ i, j ≤ p and κ in Xh, then under the CFL condition

�t(n) max
κ∈Xh

max
e∈Eh

|∂κe|
|e| max

0≤k≤p

|∂κ |
J̃ k
κ

∣∣λ(
u±

h (xk
e, t(n))

)∣∣ <
1

2p(p + 1)
, (66)

where J̃ k
κ := mine∈∂κ Jκ (xk

e), |λ(·)| is defined in (52), and the κe such that κ = ∪e∈∂κκe are defined in Lemma 3.2, we have

〈u(n+1)

h 〉κ ∈ �a ∀κ ∈ Xh.

Moreover, the scheme exactly resolves stationary material interfaces at interpolation points.

Proof. The positivity of the solution at time t(n+1) relies on techniques introduced in [57,80] to rewrite a conservative high-
order scheme for the cell-averaged solution as a convex combination of positive quantities. First, consider the three-point 
scheme (27) with the relaxation-based ES numerical flux (53). We know that this scheme preserves the solution in the set 
of states (9) under the CFL condition (52). The finite volume scheme (30) on quadrilaterals will thus be also positive under 
the condition (31) where |λ(·)| is defined in (52).

Now summing (65) over 0 ≤ i, j ≤ p gives for the cell-averaged solution

〈u(n+1)

h 〉κ (65)= 〈u(n)

h 〉κ − �t(n)

|κ |
∑

0≤i, j≤p

Ri j
κ (u(n)

h )

(63)= 〈u(n)

h 〉κ − �t(n)

|κ |
∑
e∈∂κ

p∑
k=0

ωk
|e|
2 h

(
u−

h (xk
e, t(n)),u+

h (xk
e, t(n)),ne

)
,

by conservation of the DGSEM [32,77]. Multiplying 〈u(n)

h 〉κ in the RHS by 
∑

e∈∂κ
|e|

|∂κ | = 1 and using (59), we rewrite the 
above relation as

〈u(n+1)

h 〉κ =
∑
e∈∂κ

|e|
|∂κ |

∑
0≤i, j≤p

ωiω j
J i j
κ|κ | Ui j,n

κ − �t(n)

|κ |
∑
e∈∂κ

p∑
k=0

ωk
|e|
2 h

(
u−

h (xk
e, t(n)),u+

h (xk
e, t(n)),ne

)
.

Then, using ω0 = ωp and removing and adding the same quantity, we get

〈u(n+1)

h 〉κ =
∑
e∈∂κ

∑
0≤i, j≤p

|e|
|∂κ |ωiω j

J i j
κ|κ | Ui j,n

κ −
∑
e∈∂κ

p∑
k=0

|e|
|∂κ |ωkω0

J̃ k
κ|κ | u−

h (xk
e, t(n))

+
p∑

k=0

ωkω0
J̃ k
κ|κ |
( ∑

e∈∂κ

|e|
|∂κ | u−

h (xk
e, t(n)) − �t(n)

2ω0 J̃ k
κ

∑
e∈∂κ

|e|h(
u−

h (xk
e, t(n)),u+

h (xk
e, t(n)),ne

))
,

where J̃ k
κ is defined in Theorem 6.1. We now use the fact that the traces u−

h (xk
e) correspond to some DOFs Ui j

κ that share 
the edge e (see Fig. 2): if xi j

κ ∈ e then there exists 0 ≤ k ≤ p such that xk
e = xi j

κ , so u−
h (xk

e, t(n)) = Ui j,n
κ . Rearranging the two 

first terms and multiplying the last term in the RHS with 
∑

f ∈∂κ
| f | = 1, we finally obtain
|∂κ |

14
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〈u(n+1)

h 〉κ =
∑
e∈∂κ

∑
0≤i, j≤p,xi j

κ /∈e

|e|
|∂κ |

ωiω j J i j
κ

|κ | Ui j,n
κ +

∑
e∈∂κ

p∑
k=0

|e|
|∂κ |ωkω0

Jκ (xk
e)− J̃ k

κ|κ | u−
h (xk

e, t(n))

+
∑
f ∈∂κ

p∑
k=0

| f |
|∂κ |

ωkω0 J̃ k
κ|κ |
( ∑

e∈∂κ

|e|u−
h (xk

e,t
(n))

|∂κ | − �t(n)

2ω0 J̃ k
κ

∑
e∈∂κ

|e|h(
u−

h (xk
e, t(n)),u+

h (xk
e, t(n)),ne

))
.

The terms between brackets correspond to the RHS in (30) and are therefore positive under the condition (66). We 
thus conclude that 〈u(n+1)

h 〉κ is a convex combination of positive quantities with weights |e|
|∂κ |ωiω j J with J = J i j

κ , J̃ k
κ , or 

Jκ (xk
e) − J̃ k

κ ≥ 0 from the definition of J̃ k
κ in Theorem 6.1.

Finally, suppose that the initial condition consists in a stationary material interface with states YL , ρL, v = 0, and p in 
�L and YR , ρR , v = 0, and p in �R with �L ∪ �R = �, then so do the DOFs. The numerical fluxes (24) and (53) reduce 
to hec(u−, u+, n) = h(u−, u+, n) = (0, 0, pn�, 0)� and we easily obtain from (63) that Ri j

κ (u(n)

h ) = 0 so stationary contacts 
remain stationary for all times and the DOFs are the exact values. Note that when the discontinuity �L ∩ �R corresponds 
to mesh interfaces, the relaxation based approximate Riemann solver (54) provides the exact solution and the contact 
discontinuity is exactly resolved within cell elements. �
Remark 6.1. The factor 2

p(p+1)
= ω0 = ωp in (66) compared to (31) may be compared with the results in [80] obtained on 

Cartesian meshes. Though conditions (66) and (31) are not optimal, they are sufficient for our purpose with the assumption 
of a shape-regular mesh. We refer to [11] and references therein for a review on sharp CFL conditions in the context of 
finite volume schemes.

6.3. Limiting strategy

The properties in Theorem 6.1 hold only for the cell-averaged numerical solution at time t(n+1) , which is not sufficient for 
robustness and stability of numerical computations. We use the a posteriori limiter introduced in [80] to extend positivity 
of the solution at nodal values within elements in order to guaranty robustness of the DGSEM which requires ρ > 0, ρi > 0, 
and e > 0. From (6) and (8) this imposes r(Y) = rnc + ∑nc−1

i=1 Yi(ri − rnc ) > 0. Without loss of generality we select the nc th 
component as one satisfying rnc = min1≤ri≤nc ri and we impose Y1≤i<nc > − rnc

(nc−1)(ri−rnc )
. We then enforce positivity of nodal 

values through

ρ̆
i j,n+1
κ = θ

ρ
κ ρ

i j,n+1
κ + (1 − θ

ρ
κ )〈ρ(n+1)

h 〉κ , ˜ρYk
ij,n+1
κ = θk

κρYk
ij,n+1
κ + (1 − θk

κ )ρ̆
i j,n+1
κ

〈ρY (n+1)
ih

〉κ
〈ρ(n+1)

h 〉κ
, (67a)

Ṽi j,n+1
κ = θe

κ V̆i j,n+1
κ + (1 − θe

κ )〈v(n+1)

h 〉κ ∀0 ≤ i, j ≤ p, κ ∈ Xh, (67b)

with V = (ρ, ρv�, ρE)� , vh the numerical solution for V, and 0 ≤ θ
ρ
κ , θ1≤i<nc

κ , θe
κ ≤ 1 defined by

θ
ρ
κ = min

( 〈ρ(n+1)

h 〉κ − ε

〈ρ(n+1)

h 〉κ − ρmin
κ

,1
)
, ρmin

κ = min
0≤i, j≤p

ρ
i j,n+1
κ ,

θ
Yi
κ = min

( 〈ρY (n+1)
ih

〉κ − 〈ρ(n+1)

h 〉κ
(
ε − rnc

(nc−1)(ri−rnc )

)
〈ρY (n+1)

ih
〉κ − 〈ρ(n+1)

h 〉κ Y min
iκ

,1
)
, Y min

iκ
= min

0≤k,l≤p

ρY kl,n+1
iκ

ρkl,n+1
κ

,

θe
κ = min

0≤i, j≤p

(
θ

e,i j
κ : e

(
θ

e,i j
κ (V̆i j,n+1

κ − 〈v(n+1)

h 〉κ ) + 〈v(n+1)

h 〉κ
) ≥ ε

)
,

and ε = 10−10 a parameter to guaranty positivity of nodal values, e.g., ρ̃ i j,n+1
κ ≥ ε > 0.

7. Numerical experiments

In this section we present numerical experiments, obtained with the CFD code Aghora developed at ONERA [65], on 
problems involving nc = 2 components in one and two space dimensions in order to illustrate the performance of the 
DGSEM derived in this work. Unless stated otherwise, we use a fourth-order accurate (p = 3) scheme in space together with 
a four-stage third-order strong-stability preserving Runge-Kutta method [70], while the limiter (67) is applied at the end of 
each stage. We set γ = max(γ1, γ2) in (56) and ensure the inequality in (36) by increasing the wave speed estimates S X=L,R

by a factor 1.05. The time step is evaluated through �t(n) maxκ∈Xh
1

|κ |
√∑

e∈κ |e|2|λ(〈u(n)

h 〉κ )| ≤ 0.4 where λ(·) is defined in
(52). This condition was seen to preserve the positivity of the solution during our experiments, while it constitutes a less 
complex and less restrictive condition than (66).
15
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Table 1
Void fraction and density waves: norms of the error at time t = 5 and associated orders of convergence.

p 1/N ‖eh‖L1(�) O1 ‖eh‖L2(�) O2 ‖eh‖L∞(�) O∞
1/16 0.31913e+00 − 0.35219e+00 − 0.48878e+00 −
1/32 0.29791e+00 0.10 0.33037e+00 0.09 0.46538e+00 0.07

0 1/64 0.23717e+00 0.33 0.26332e+00 0.33 0.37208e+00 0.32
1/128 0.15798e+00 0.59 0.17549e+00 0.58 0.24836e+00 0.58
1/256 0.92549e−01 0.77 0.10288e+00 0.77 0.14642e+00 0.76

1/4 0.24745e+00 − 0.34889e+00 − 0.49518e+00 −
1/8 0.39647e+00 −0.68 0.43745e+00 −0.33 0.62568e+00 −0.34

1 1/16 0.20853e+00 0.93 0.23087e+00 0.92 0.34328e+00 0.87
1/32 0.60157e−01 1.79 0.67213e−01 1.78 0.10832e+00 1.66
1/64 0.17318e−01 1.80 0.18977e−01 1.82 0.34753e−01 1.64

1/4 0.82260e−01 − 0.10338e+00 − 0.16582e+00 −
1/8 0.85848e−02 3.26 0.11908e−01 3.12 0.25905e−01 2.68

2 1/16 0.21406e−02 2.00 0.28735e−02 2.05 0.74976e−02 1.79
1/32 0.25474e−03 3.08 0.35685e−03 3.01 0.12013e−02 2.64
1/64 0.23934e−04 3.41 0.33731e−04 3.40 0.13061e−03 3.20

1/4 0.56380e−02 − 0.74671e−02 − 0.14145e−01 −
1/8 0.16611e−02 1.76 0.21002e−02 1.83 0.45926e−02 1.62

3 1/16 0.92849e−04 4.16 0.13191e−03 3.99 0.43411e−03 3.40
1/32 0.30461e−05 4.96 0.44199e−05 4.90 0.19246e−04 4.50
1/64 0.30281e−06 3.33 0.42853e−06 3.37 0.14364e−05 3.74

Table 2
Initial conditions and physical parameters of Riemann problems with U = (Y1, ρ, u, p)� .

Test Left state UL Right state UR xs t γ1 C v1 γ2 C v2

RP0 (0.4,2,0,1)� (0.6,1.5,0,2)� 0 0.2 1.5 1 1.3 1
RP1 (0.5,1,0,1)� (0.5,0.125,0,0.1)� 0 0.2 1.5 1 1.3 1
RP2 (1,1.602,0,106)� (0,1.122,0,105)� −0.1 3 × 10−4 5

3 3.12 1.4 0.743
RP3 (0.2,0.99988,−1.99931,0.4)� (0.5,0.99988,1.99931,0.4)� 0 0.15 1.5 1 1.3 1
RP4 (1,1,0,1)� (0,0.1,0,1)� 0 0.08 1.6 1 1.4 1
RP5 (1,1,1,1)� (0,0.1,1,1)� 0 0.08 1.6 1 1.4 1

7.1. Convection of void fraction and density waves

We first consider the convection of void fraction and density waves in a flow with uniform velocity and pressure [21]. 
Let � = (0, 1), we set γ1 = 1.6, γ2 = 1.4, Cv1 = 2, Cv2 = 1, and solve the problem (1) with periodic conditions and the 
initial condition

Y10(x) = 1
2 + 1

4 sin(4πx), ρ0(x) = 1 + 1
2 sin(2πx), u0(x) = 1, p0(x) = 1 ∀x ∈ �.

Table 1 indicates the norms of the numerical error on density eh = ρh − ρ for different polynomial degrees and grid 
refinements with associated convergence rates in space. We use the five-stage fourth-order Runge-Kutta scheme from [70]
for p = 3. Results obtained with the first-order three-point scheme (29) (referred to as p = 0) are also provided for the sake 
of comparison. The expected p + 1 order of convergence is recovered with the present method.

7.2. One-dimensional shock-tube problems

Let consider Riemann problems associated with the initial condition u0(x) = uL if x < xs and uR if x > xs (see Table 2 for 
details).

We first validate the entropy conservation of the numerical flux (24). We thus replace the ES numerical flux h at in-
terfaces in (63) by the EC flux (24). We follow the experimental setup introduced in [8] and choose an initial condition 
corresponding to problem RP0 in Table 2 resulting in the development of weak shock and contact waves on a domain of 
unit length with periodic boundary conditions. As a result of entropy conservation of the space discretization, only the time 
integration scheme should modify the global entropy budget at the discrete level. We thus evaluate the difference

eh(t) :=
∑
κ∈Xh

|κ |〈η(uh) − η(u0)〉κ (t), (68)

which quantifies the difference between the discrete entropy at final time and the initial entropy over the domain �. 
We observe in Table 3 that the error (68) decreases to machine accuracy when refining the time step with third-order 
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Table 3
Entropy conservation error (68) and order of convergence O obtained for 
problem RP0 (N = 100 cells, p = 3) with either an EC or an ES numerical 
flux at interfaces.

Flux EC ES

eh(t) O eh(t)

�t −6.34260e−08 1.16 −7.69825e−07
�t/2 −1.33328e−08 2.25 −7.69777e−07
�t/4 −1.82337e−09 2.87 −7.69771e−07
�t/8 −2.30876e−10 2.98 −7.69770e−07
�t/16 −2.89133e−11 3.00 −7.69770e−07

of convergence as asymptotic limit corresponding to the theoretical approximation order of the time integration scheme 
[70]. This validates the entropy conservation property of the numerical flux (24). For comparison we also ran the same 
experiments when using the ES flux (53) at interfaces which confirmed a global entropy dissipation independent of the 
time step.

Results for problems RP1 to RP5 are displayed in Figs. 3 and 4 where we compare the numerical solution in symbols 
with the exact solution in lines. Problem RP1 corresponds to the classical Sod problem for the compressible Euler equations 
since the mass fraction is uniform and corresponds to an equivalent γ (Y) = 1.4 for the mixture. Problem RP2 comes from 
[41] and corresponds to a He-N2 shock tube problem, RP3 corresponds to a multicomponent near vacuum problem with 
two rarefaction waves, while RP4 and RP5 consist in material interfaces [2]. We observe that the shock and contact waves 
are well captured and only some spurious oscillations of small amplitude are observed in RP2 which also exhibits a train 
of oscillations at the tail of the rarefaction wave. Positivity of the density is preserved in the near vacuum region which 
highlights the robustness of the scheme. Finally, the stationary contact wave in RP4 is exactly resolved as expected from 
Theorem 6.1, while spurious oscillations inherent to discretely conservative schemes [1,2] are observed around the moving 
interface in RP5 as pointed out in section 1.2.

7.3. Shock wave-helium bubble interaction

We now consider the interaction of a shock with a helium bubble [37] which is commonly used to assess the resolution 
by numerical schemes of shock waves, material interfaces and their interaction in multiphase and multicomponent flows 
(see [49,27,59,12] and references therein).

The domain extends to � = [0, 6.5] × [0, 0.89]. A left moving M = 1.22 normal shock wave in air is initially located 
at x = 4.5 and interacts with a bubble of helium of unit diameter with center located at x = 3.5 and y = 0. Symmetry 
conditions are set to the top and bottom boundaries, while non reflecting conditions are applied to the left and right 
limits of the domain. The thermodynamical parameters of helium and air are γ1 = 1.648, Cv1 = 6.89 and γ2 = 1.4, Cv2 =
1.7857, respectively. Data are made nondimensional with the initial bubble diameter and pre-shock density, temperature 
and sound speed. We use an unstructured mesh with N = 238, 673 elements (see Fig. 5a). The complete setup of the initial 
condition can be found in [49]. Note that this test case is usually computed including viscous effects. To avoid spurious 
oscillations at material interfaces in inviscid computations we regularize the initial condition of the bubble-air interface 
following [7,49,41].

Fig. 6 displays contours of pressure, void fraction and numerical Schlieren obtained at different times initialized when the 
shock reaches the bubble. The shock and material interfaces are well resolved and the solution does not present significant 
spurious oscillations. The results are in good qualitative agreement with the experiment in [37] and numerical simulations 
(see e.g., [49]). In particular the shock dynamics and the bubble deformation are well reproduced, and vortices are generated 
along the bubble interface due to the Kelvin-Helmholtz instability. Fig. 5 displays the (x, t)-positions of three characteristic 
interface points in close agreement with the results from [49].

7.4. Richtmyer-Meshkov instability

We also simulate the interaction of a Mach 1.21 shock wave in a mixture of air and acetone vapor with a perturbed 
interface separating the mixture from a dense SF6 gas [10]. The complete setup may be found in [41,56,51,12]. The thermo-
dynamical parameters of the mixture and SF6 are γ1 = 1.24815, Cv1 = 3.2286 and γ2 = 1.0984, Cv2 =2.0019, respectively. 
The Atwood number of the initial state is At = ρ2−ρ1

ρ1+ρ2
= 0.6053 where ρ2 = γ2 is taken as the pre-shock density of the 

mixture. Data are made nondimensional with a length scale of 1 cm, and the pre-shock pressure, temperature and sound 
speed of the mixture. The size of the domain is � = [0, 80.1] × [0, 5.9], periodicity conditions are set to the top and bottom 
boundaries, while non reflecting and reflecting conditions are applied to the left and right boundaries, respectively. We use 
a Cartesian grid with 1601 × 118 elements which corresponds to 118 elements per perturbation wavelength and constitutes 
a coarse mesh compared to other experiments [41,56,12].

We consider the single-mode perturbation of the material interface [10]. The shock travels to the right and interacts 
with the interface, then reflects at the right boundary and interacts a second time with the interface (re-shock regime). 
F. Renac Journal of Computational Physics 445 (2021) 110584
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Fig. 3. Riemann problems RP1 to RP3 from Table 2 discretized with p = 3 and N = 100 cells (in RP2, velocity and pressure have been scaled by factors 103

and 106, respectively).
18



Fig. 4. Riemann problems from Table 2 on isolated stationary (top) and moving (bottom) interfaces discretized with p = 3 and N = 100 cells.

Fig. 5. Shock wave-helium bubble interaction: (a) example of unstructured mesh in the range 2.5 ≤ x ≤ 5 with N = 790 elements and initial positions of 
the shock and bubble; (b) space-time diagram of positions of three characteristic interface points (symbols) with comparison to [49] (lines); (c) illustration 
of the characteristic interface points (gray filled circles).

Fig. 7 shows results before and after re-shock where the density and vorticity contours are displayed. The first interaction 
produces vorticity at the interface and the formation and roll-up of spikes, while the second interaction with the reflected 
shock wave produces complex fine flow field structures and a low Mach number flow field. Again, we observe a good 
resolution of the shock and material interface and the associated vortical structures.

7.5. Strong shock wave-hydrogen bubble interaction

We finally consider an interaction problem of a planar shock in air with a circular hydrogen bubble that has been 
numerically investigated in [69,26,7]. Compared to the test case in section 7.3, the shock is stronger with a Mach number 
M = 2 which results in faster shock and bubble dynamics. The bubble has a diameter of 5.6 and is centered at x = 4 and 
y = 0 (see Fig. 8), it is filled with hydrogen with γ1 = 1.41 and Cv1 = 7.424 and is surrounded by air with γ2 = 1.353, 
Cv2 = 0.523. The shock is initially set at x = 7 with pre-shock conditions T = 1000 K, p = 1 atm, and u = 1240 m/s. Data 
are made nondimensional with pre-shock density, velocity and temperature, and 1 mm as length scale. The domain extends 
to � = [0, 22.5] × [0, 7.5] and we use a coarse unstructured mesh with N = 74, 504 elements. Symmetry conditions are set 
to the top and bottom boundaries, while supersonic inflow is imposed at the left boundary and non reflecting conditions 
are applied at the right boundary. In Fig. 6 we plot contours of pressure, void fraction and numerical Schlieren obtained at 
different times. Results compare well with other numerical experiments [69,26,7] and highlight robustness and accuracy of 
the present method on unstructured meshes.

8. Concluding remarks

A high-order, ES and robust scheme is introduced in this work for the discretization of a multicomponent compressible 
Euler system on unstructured meshes in multiple space dimensions. The space discretization relies on the ES DGSEM frame-
F. Renac Journal of Computational Physics 445 (2021) 110584
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Fig. 6. Shock wave-helium bubble interaction: 70 pressure contours from 0.66 to 1.29 (lines) and 20 void fraction contours (colors, see legend), and 
Schlieren |∇ρ|/ρ obtained with p = 3 and N = 238, 673 cells at different physical times.

Fig. 7. Richtmyer-Meshkov instability: 25 density ρ (top) and 21 vorticity ∇ × v (bottom) contours before (a-c) and after (d) re-shock obtained with a 
polynomial degree p = 3 and a h = 1/20 mesh at different physical times. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)
20
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Fig. 8. Strong shock wave-hydrogen bubble interaction: 68 pressure contours from 0.06 to 1.4 (lines) and 20 void fraction contours (colors, see legend), and 
Schlieren |∇ρ|/ρ obtained with p = 3 and N = 74, 504 cells at different physical times.

work [28,31,17] based on the modification of the integral over discretization elements where we replace the physical fluxes 
by EC numerical fluxes [71] and on the use of ES numerical fluxes at element interfaces.

We first design two-point EC and ES fluxes for the multicomponent flow model. The latter is derived from the pressure 
relaxation scheme for the compressible Euler equations [9] and the energy relaxation approximation from [22,54] to allow 
the use of a simple polytropic equation of states for the mixture in the numerical approximation. This numerical flux 
provides an ES and robust three-point scheme which is then used as a building block for the design of the DGSEM.

We then derive conditions on the numerical parameters and the time step to guaranty positivity of the density, internal 
energy, and void fractions of the cell-averaged solution when using a forward Euler discretization in time. We use a poste-
riori limiters from [80] to restore positivity of all DOFs within cells. The scheme is also proved to exactly resolve stationary 
contact waves. An explicit Runge-Kutta scheme [70] is used for the high-order time integration.

We perform high-order accurate numerical simulations of flows in one and two space dimensions with discontinuous 
solutions and complex wave interactions. The results highlight the accurate resolution of material interfaces, shock and con-
tact waves, their interactions and associated small scale features. Likewise, robustness and nonlinear stability of the scheme 
21
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are confirmed. Future investigations will focus on the suppression of spurious oscillations at moving material interfaces by 
considering the discretization of alternative models [1,48,3] while keeping the same properties as the present scheme and 
on the extension of this approach to stiffened gas equations of states to account for mixture with liquid components.
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Appendix A. Proof of Lemma 3.2

We here prove Lemma 3.2 that has been first proved in [57, Th. 4] for triangles. Note that the proof can be generalized 
to star-shaped polygonal elements. We first need the following result that also extends [57, Th. 3] to quadrangles.

Lemma A.1. Let a three-point numerical scheme of the form (27) with a consistent (22), conservative (23), and Lipschitz continuous 
numerical flux h(·, ·, ·) for the discretization of (1a) that satisfies positivity of the solution, Un≥0

j∈Z in �a, under the CFL condition in
(27). Then, the numerical scheme (29) on quadrangular meshes with the same numerical flux is positive under the condition

�t max
κ∈�h

|∂κ |
|κ | max

e∈∂κ
|λ(Un

κ±)| ≤ 1

2
, |∂κ | :=

∑
e∈∂κ

|e|. (A.1)

Proof. Using 
∑

e∈∂κ |e|ne = 0, we rewrite (29) under the form

Un+1
κ = Un

κ − �t
|κ |

∑
e∈∂κ

|e|(h(Un
κ ,Un

κ+
e
,ne) − f(Un

κ ) · ne
)

(22)= Un
κ − �t

|κ |
∑
e∈∂κ

|e|(h(Un
κ ,Un

κ+
e
,ne) − h(Un

κ ,Un
κ ,ne)

)
(A.1)=

∑
e∈∂κ

|e|
|∂κ |

(
Un

κ − �t|∂κ |
|κ |

(
h(Un

κ ,Un
κ+

e
,ne) − h(Un

κ ,Un
κ ,ne)

))
,

which is a convex combination of positive three-point schemes (27) under the condition (A.1). �
Proof (Proof of Lemma 3.2). We use the notations in Fig. 1 and set nef = −n f e and lef = l f e . By conservation (23), we have

∑
e∈∂κ

∑
f ∈∂κe\{e}

lef h(Un
κ−

e
,Un

κ−
f
,nef ) = 0.

Adding this quantity to (30), we get

Un+1
κ

(30)=
∑
e∈∂κ

|e|
|∂κ | Un

κ−
e

− �t
|κ |

∑
e∈∂κ

(
|e|h(Un

κ−
e
,Un

κ+
e
,ne) +

∑
f ∈∂κe\{e}

lef h(Un
κ−

e
,Un

κ−
f
,nef )

)

=
∑
e∈∂κ

|e|
|∂κ |

(
Un

κ−
e

− |∂κ |
|e|

�t
|κ |

∑
f ∈∂κe

lef h(Un
κ−

e
, Ûef ,n

κ ,nef )
)
,

with the conventions lee = |e|, nee = ne , Ûee,n
κ = Un

κ+
e

, and Ûef ,n
κ = Un

κ−
f

for f �= e. The scheme (30) is therefore a convex 

combination of positive schemes of the form (29) under (31). �
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Appendix B. Another EC flux for the physical entropy

We here derive another EC flux which is similar to the EC introduced in [35] and reads

hec(u−,u+,n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hρY1(u−,u+,n)
...

hρYnc−1(u−,u+,n)

hρ(u−,u+,n)

hρ(u−,u+,n)v + pθ

θ
n

nc∑
i=1

(
C vi
θ̂

+ v−·v+
2

)
hρYi (u−,u+,n) + pθ

θ
v · n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

hρYi (u−,u+,n) = αiρ̂iv · n,

hρ(·, ·, ·) =
nc∑

i=1

hρYi (·, ·, ·),
(B.1)

with θ = 1
T . Symmetry (20) and consistency (22) follow from symmetry and consistency of the logarithmic mean and 

average operator. Let now prove that (B.1) is EC (19) by following the lines of [35]. We will use �si� 
(15)= −Cvi �ln θ� − ri�lnρi�. 

Let expand

�ψ(u) · n�
(18)= �r(Y)ρv · n�

(5)= (
pθ�v�+ �ρr(Y)�v

) · n
(2)= pθ�v� · n +

nc∑
i=1

αi�ρr(Y)�v · n
(8)= pθ�v� · n +

nc∑
i=1

αiri�ρi�v · n.

Using short notations for the flux components and the definition of hρ in (B.1) we get

�η′(u)� · hec(u−,u+,n) =
nc−1∑
i=1

�(C vi − C vnc
) ln θ + ri lnρi − rnc lnρnc �hρYi

+ �C vnc
ln θ + rnc lnρnc − v·v

2 θ�hρ + �θv� · hρv − �θ�hρE

(B.1)=
nc∑

i=1

(C vi �ln θ� + ri�lnρi�)hρYi −
(

v·v
2 �θ� + θv · �v�

)
hρ

+ (�θ�v + θ�v�) · hρv − �θ�hρE

and �η′(u)� · hec(u−, u+, n) − �ψ(u) · n� becomes

nc∑
i=1

ri�lnρi�
(
hρYi − αiρ̂iv · n

) + θ�v� · (hρv − hρv − pθ

θ
n
) + �ln θ�

( nc∑
i=1

C vi hρYi − θ̂ (hρE − v · hρv + v·v
2 hρ)

)
which indeed vanishes from (B.1).

Appendix C. Pressure-based relaxation system and numerical flux for (32)

We here give details on the pressure-based relaxation system used to derive the ES and robust numerical flux in (49) for 
the relaxation model in homogeneous form (33). This numerical scheme is adapted from [9, Prop. 2.21] and is based on a 
relaxation approximation using evolution equations for a relaxation pressure in place of pr(ρ, er) and for a in (55) in place 
of the Lagrangian sound speed ρcγ (ρ, pr) = √

γρpr . We first recall the model in C.1 and derive the numerical scheme (49)
and entropy inequality (50) in C.2. We refer to [9, Sec. 2.4] or [19] for complete introductions and in-depth analyses.

C.1. Pressure-based relaxation system

This system is here adapted from [9, Sec. 2.4] to multiple components and reads

∂twr + ∇ · gr(wr) = 0, wr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρY
ρ
ρv
ρEr

ρes
ρπ
a2

ρa

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, gr(wr) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρYv�
ρv�

ρvv� + π I(
ρEr + π

)
v�

ρesv�
ρπ
a2 v� + v�

ρav�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C.1)

Following [9, Sec. 2.4], the relaxation mechanisms are not included in (C.1), but are replaced by time discrete projection 
onto the equilibrium manifold {wr : π = pr(ρ, er)}. The system is hyperbolic in the direction n with eigenvalues v · n − a/ρ , 
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v · n, and v · n + a/ρ associated to LD fields. The exact solution to the Riemann problem for (C.1) with initial data wr,0(x) =
wr,L if x := x · n < 0 and wr,0(x) = wr,R if x · n > 0 reads

Wπ
r ( x

t ;wr,L,wr,R ,n) =

⎧⎪⎪⎨
⎪⎪⎩

wr,L,
x
t < uL − aL/ρL,

w�
r,L, uL − aL/ρL < x

t < u�,

w�
r,R , u� < x

t < uR + aR/ρR ,

wr,R , uR + aR/ρR < x
t ,

(C.2)

where u X = vX · n and w�
r,X = (

ρ�
X Y�

X , ρ�
X , ρ�

X v��
X , ρ�

X E�
r,X , ρ�

X es,X , ρ
�
X π�

a2
X

, ρ�
XaX

)�
for X = L, R . The quantities ρ�

X and v�
X are 

defined in (55), while

u� = aLuL + aR uR + πL − πR

aL + aR
, π� = aRπL + aLπR + aLaR(uL − uR)

aL + aR
, (C.3a)

E�
r,L = Er,L − π�u� − pr,LuL

aL
, E�

r,R = Er,R − pr,R uR − π�u�

aR
. (C.3b)

From (44) we write ζ(Y, τ , er, es) = − r(Y)
γ −1 ln(τ γ −1er) + ςr(Y, es) and introduce the quantities X = er − π

2a2 and I =
π + a2τ . For smooth solutions of (C.1) we have

∂ta + v · ∇a = 0, ∂t X + v · ∇ X = 0, ∂t I + v · ∇ I = 0, ∂tes + v · ∇es = 0,

so the function ζ r(Y, τ , er, es, π, a) = − r(Y)
γ −1 ln

(
τ̃ (a, X, I)γ −1ẽr(a, X, I)

) + ςr(Y, es) satisfies

∂tρζ r + ∇ · (ρζ rv) = 0, (C.4)

where the functions satisfy τ̃ (a, X, I) = τ and ẽr(a, X, I) = er at equilibrium π = pr(ρ, er) and are defined in [6]. Moreover, 
under the subcharacteristic condition

a ≥ √
γρpr(ρ, er) ∀ρ > 0, er > 0, (C.5)

we have the following minimization principle

ζ(Y, τ , er, es) = min
π∈R

ζ r(Y, τ , er, es,π,a), (C.6)

and the minimum is reached at equilibrium π = pr(ρ, er) [6].

C.2. Numerical scheme for (33)

The numerical scheme (49) for (33) is based on the pressure relaxation system (C.1) and uses two steps between times 
t(n) and t(n+1) = t(n) + �t: an evolution step between t(n) and t(n+1)− = t(n) + �t and an instantaneous projection step from 
t(n+1)− to t(n+1) .

In the evolution step, we solve the Cauchy problem (C.1) with initial data wr,0(x) = Wn
r, j = (

(Wn
j )

�, 
ρn

j π
n
j

(an
j )

2 , ρn
j an

j

)�
for x

in the jth cell κ j , where Wn
j are the DOFs in (49), and πn

j and an
j will be defined below. The solution wr,h(x, t) to this 

problem consists in the juxtaposition of Riemann problem solutions (C.2) at each mesh interface. Under the condition (52)
on the time step, these solutions do not interact. Let consider ρζ r as a function of wr , integrating (C.4) on the rectangle 
κ j × [t(n), t(n+1)−] we obtain〈

ρζ r(wr,h(x, t(n+1)−)
)〉

j − ρζ r(Wn
r, j) + �t

�x

(
Hρζ r

(
Wn

r, j,Wn
r, j+1,n

) − Hρζ r
(
Wn

r, j−1,Wn
r, j,n

)) = 0, (C.7)

where Hρζ r (Wn
r, j, W

n
r, j+1, n) = {ρζ rv · n}(Wπ

r (0, Wn
r, j, W

n
r, j+1, n)

)
denotes the entropy flux evaluated at the interface from

(C.2) and 〈·〉 j is the cell average.
In the projection step, the solution at time t(n+1)− is projected onto the equilibrium manifold {wr : π = pr(ρ, er)} which 

amounts to impose πn+1
j = pr(ρ

n+1
j , en+1

r, j ), so ρζ r(Wn+1
r, j ) = ρζ(Wn+1

j ). Using the minimization principle (C.6) and then the 
Jensen’s inequality applied to the convex function ρζ(w) we obtain〈

ρζ r(wr,h(x, t(n+1)−)
)〉

j ≥ 〈
ρζ

(
wh(x, t(n+1))

)〉
j ≥ ρζ(Wn+1

j ). (C.8)

By combining (C.7) and (C.8), we obtain (50) with

Z(Wn
j ,Wn

j+1,n) = Hρζ r (Wn
r, j,Wn

r, j+1,n), Wn
r, j = (

(Wn
j )

�,
ρn

j pr(ρ
n
j ,e

n
r, j)

(an)2 ,ρn
j an

j

)�
, (C.9)
j
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where the coefficients an
j will be defined below to guaranty to satisfy the subcharacteristic condition (C.5) and the positivity 

of the solution, Wn+1
j ∈ �r , [6]. Indeed, observe that the variables (ρ, ρv�, ρEr, ρπ

a2 , ρa)� in (C.1) are uncoupled from ρY
and ρes , so the associated equations correspond to the relaxation approximation from [9, Sec. 2.4] for the Euler equations 
with a perfect gas equation of state (35). Applying [9, Prop. 2.21], the three-point scheme (49) guaranties positivity of ρ
and er under the CFL condition

�t

�x
max
j∈Z

|λ(Wn
j )| <

1

2
, |λ(w)| := |v · n| + a

ρ . (C.10)

Positivity of ρY and ρes then follows from averaging the Riemann solution (C.2) under (C.10).
The pressure relaxation-based numerical flux for (33) thus reads

H(w,w,n) = g
(
Wπ (0;w−,w+,n)

) · n, (C.11)

where Wπ (·; wL, wR , n) is used to approximate the solution to the Riemann problem for (33) with initial data w0(x) = wL

if x := x · n < 0 and w0(x) = wR if x · n > 0:

Wπ ( x
t ;wL,wR ,n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wL,
x
t < SL,

w�
L, SL < x

t < u�,

w�
R , u� < x

t < S R ,

wR , S R < x
t ,

(C.12)

where w�
X = (ρ�

X Y�
X , ρ�

X , ρ�
X v��

X , ρ�
X E�

r,X , ρ�
X es,X )� , for X = L, R , with ρ�

X and v�
X defined in (55), E�

r,X in (C.3), and SL =
uL − aL/ρL and S R = uR + aR/ρR from (56) by using pr instead of p.

Appendix D. EC numerical flux plus dissipation at interfaces

One common way to design an ES two-point numerical flux relies on adding upwind-type dissipation to EC numerical 
fluxes and has been first proposed by Roe [67,42] (see also the introduction in section 1 for more references). We here 
derive such a numerical flux and show some numerical results for the sake of comparison. We recall that this approach 
does not provide Lipschitz continuous numerical fluxes and prevents to prove positivity of the solution. Moreover, such 
numerical fluxes use expensive operations such as the logarithmic mean [42].

D.1. Derivation of the ES numerical flux

We define the ES flux as the sum of the EC flux (24) and dissipation:

h(u−,u+,n) = hec(u−,u+,n) − νAD

2

∣∣f′(u)
∣∣Dη�η′(u)�, (D.1)

where νAD > 0 is a parameter and Dη is a symmetric positive definite matrix. We use the scalar dissipation operator ∣∣f′(u)
∣∣ = max

(
λ± : λ = |v · n| + c(ρ, e)

)
Inc+d+1 for its robustness compared to other matrix dissipation types [32]. We here 

follow the work in [32] and look for a dissipation of the form Dη�η′(u)� = Du�u�. The dissipation reads

Du�u� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
rnc

r(Y)
�ρnc �

rnc

r(Y)
�ρnc �v + ρ̂�v�

rnc

r(Y)

(
C vnc

θ̂
+ v+·v−

2

)
�ρnc � + ρ̂v · �v� + ρ̂C v(Y)�T�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with θ = 1
T , which results in the following entropy dissipation rate

�η′(u)� ·Du�u�
(17)= �C pnc

− snc − v·v
2 θ�

rnc

r(Y)
�ρnc � + (�θ�v + θ�v�) ·

(
rnc

r(Y)
�ρnc �v + ρ̂�v�

)
− �θ�

((
C vnc

θ̂
+ v+·v−

2

)
rnc

r(Y)
�ρnc � + ρ̂

(
v · �v� + C v(Y)�T�

))
(15)= r2

nc

r(Y)
�ρnc ��lnρnc � + ρ̂θ�v� · �v� −

(
v·v
2 − v · v + v+·v−

2

)
rnc

r(Y)
�ρnc ��θ� − ρ̂C v(Y)�T��θ�

= r2
nc

r(Y)
�ρnc ��lnρnc � + ρ̂θ�v� · �v� + ρ̂C v(Y) θ

T
�T�2,
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Fig. D.9. Riemann problem RP2 obtained with the Roe-like ES numerical flux (D.1) (with νAD = 0.5) at interfaces, p = 3, and N = 100 cells.

Fig. D.10. Shock wave-helium bubble interaction: 70 pressure contours (lines) and 20 void fraction contours (colors), and Schlieren |∇ρ|/ρ obtained with 
the Roe-like ES numerical flux (D.1) (with νAD = 0.15) at interfaces, p = 3, and N = 238, 673 cells (see Fig. 6 for details on the contours).

which is a sum of positive terms for all u in �a , so (D.1) is indeed ES in the sense of (21):

�η′(u)� · h(u−,u+,n) − �ψ(u) · n�
(D.1)= �η′(u)� · hec(u−,u+,n) − �ψ(u) · n� − νAD

2

∣∣f′(u)
∣∣�η′(u)� ·Dη�η′(u)�

(19)= −νAD

2

∣∣f′(u)
∣∣�η′(u)� ·Du�u� ≤ 0.

Note that we do not add numerical dissipation to the mass fraction equations as they are associated to a LD field and re-
main uniform across shocks. Likewise, the choice of the coefficient before �ρnc � is motivated by (8) so we are approximating 
the jump in ρ with rnc �ρnc �/r(Y).

D.2. Numerical experiments

Figs. D.9 and D.10 display some results obtained with the ES numerical flux (D.1) at interfaces and the EC flux (24) in 
the evaluation of the volume terms. Our numerical experiments highlight robustness issues, which led us to reduce the 
time step �t maxκ∈Xh

1
|κ |

√∑
e∈κ |e|2|λ(〈u(n)

h 〉κ )| ≤ 0.2, where |λ(u)| = |v · n| + c(Y, e), compared to a 0.4 bound with the 
relaxation-based numerical flux (53). The viscosity coefficient νAD in (D.1) was chosen based on a parametric study to 
keep robustness of the computations as long as possible. We recall that such robustness issues were already reported in 
[35, Sec. 5.4]. The time discretization and limiter are the same as used in section 7. We display partial results of the 2D 
computations which did not go to their end and were stopped due to negative solution at some integration point. Compared 
to the results obtained with (53) at interfaces, we observe a similar behavior in the 1D Riemann problem in Fig. D.9 and 
spurious oscillations around shocks in the 2D experiments in Fig. D.10. It is certainly possible to reduce such oscillations 
and improve robustness of the method by carefully designing the artificial dissipation in (D.1), but this is beyond the scope 
of the present study.
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